Revision 2 (Solutions)

Year 11 Examination

Question/Answer Booklet

MATHEMATICS SPECIALIST UNITS 1 AND 2 Section Two: Calculator-assumed

Student Number:

In figures

In words

Teacher name

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer Booklet Formula Sheet

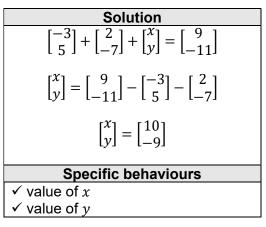
To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.


Section Two: Calculator-assumed

This section has **eight (8)** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1

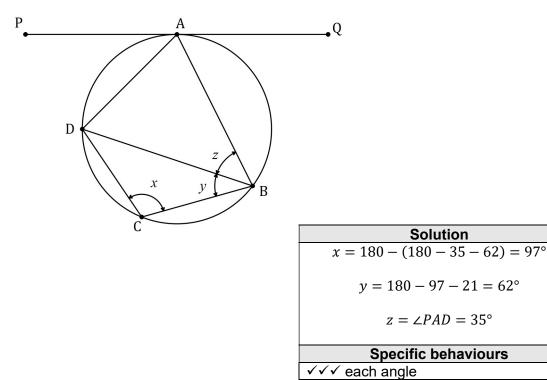
(a) The point P(-3, 5) is translated by the column vectors $\begin{bmatrix} 2 \\ -7 \end{bmatrix}$ and $\begin{bmatrix} x \\ y \end{bmatrix}$ to P'(9, -11). Determine the values of the constants *x* and *y*. (2 marks)

(b) Determine the single matrix that represents, in order, the composition of a rotation of 30° anti-clockwise about the origin followed by reflection in the line y = x. Express matrix coefficients in exact form. (4 marks)

Solution
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} \cos 30 & -\sin 30 \\ \sin 30 & \cos 30 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
Specific behaviours \checkmark matrix for rotation \checkmark matrix for reflection \checkmark multiplies in correct order \checkmark correct matrix

SPECIALIST UNITS 1 AND 2

65% (54 Marks)

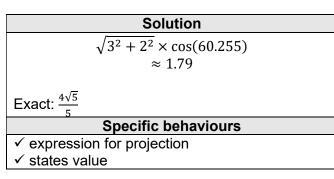

(6 marks)

(3 marks)

The diagram below shows four points *A*, *B*, *C* and *D* lying on the circumference of a circle. The line *PQ* is a tangent to the circle at *A*, $\angle BDC = 21^\circ$, $\angle PAD = 35^\circ$ and $\angle QAB = 62^\circ$.

Determine the size of angles x, y and z.

(3 marks)



- (a) If $\mathbf{p} = 4\mathbf{i} 2\mathbf{j}$ and $\mathbf{q} = 3\mathbf{i} + 2\mathbf{j}$ determine
 - (i) the angle between the directions of \mathbf{p} and \mathbf{q} , to the nearest tenth of a degree.

(2 marks)

Solution	
Using CAS angle is $60.255 \approx 60.3^{\circ} (1 dp)$	
Specific behaviours	
Specific behaviours ✓ states angle	

(ii) the scalar projection of \mathbf{q} on \mathbf{p} .

(b) The vector $21\mathbf{i} + 5a\mathbf{j}$ has a magnitude of 29 and is perpendicular to the vector $4\mathbf{i} - 2b\mathbf{j}$. Determine the values of the constants *a* and *b*, where a < b. (5 marks)

Solution				
$21^2 + (5a)^2 = 29^2$				
$a = \pm 4$				
(21)(4) + (5a)(-2b) = 0 84 - 10(±4)b = 0 $b = \pm \frac{21}{10}$				
$a = -4, \qquad b = -\frac{21}{10}$				
Specific behaviours				
✓ uses magnitude to form equation				
\checkmark calculate values of a				
\checkmark uses dot product to form equation				
\checkmark calculate values of b				
✓ chooses correct pairing				

SPECIALIST UNITS 1 AND 2

(2 marks)

Solution		
$LHS = \sin 3A$		
$= \sin(A + 2A)$		
$= \sin A \cos 2A + \cos A \sin 2A$		
$= \sin A \left(1 - 2\sin^2 A\right) + \cos A \left(2\sin A \cos A\right)$		
$= \sin A - 2\sin^3 A + 2\sin A \left(1 - \sin^2 A\right)$		
$= 3\sin A - 4\sin^3 A$		
= RHS		
Specific behaviours		
✓ expands sum of A and 2A		
✓ uses double angle identity for cos2A		
✓ uses double angle identity for sin2A		

 \checkmark expands and simplifies

(b) Hence, or otherwise, solve $3\sin A - 4\sin^3 A = \frac{1}{2}, 0 \le A \le \frac{\pi}{3}$.

(2 marks)

Solution
$\sin 3A = \frac{1}{2}$
$3A = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{5\pi}$
$A = \frac{\pi}{18}, \frac{5\pi}{18}$
Specific behaviours
✓ one correct solution
\checkmark all solutions within required domain

(6 marks)

(4 marks)

CALCULATOR-ASSUMED

Question 5

Triangle *ABC* has vertices A(1, 2), B(4, -1) and C(5, 3).

(a) The vertices *ABC* are transformed to A'B'C' using matrix $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. Write down the new coordinates of the vertices and describe the transformation. (4 marks)

Solution				
$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & -4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$				
A'(-1,2), B'(-4,-1), C'(-5,3)				
Transformation is a reflection in the line $x = 0$.				
Specific behaviours				
✓ matrix product				
writes apardinates of vertices				

- \checkmark writes coordinates of vertices
- \checkmark states reflection
- ✓ states equation of line of reflection
- (b) The vertices *ABC* are transformed to A''B''C'' by matrix *M* so that the new coordinates of the vertices are A''(-4,3), B''(2,12) and C''(-6,15).
 - (i) Determine the transformation matrix *M*.

(3 marks)

Solution
$$M \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 3 & 12 \end{bmatrix}$$
 $M = \begin{bmatrix} -4 & 2 \\ 3 & 12 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & -1 \end{bmatrix}^{-1}$ $M = \begin{bmatrix} 0 & -2 \\ 3 & 0 \end{bmatrix}$ Specific behaviours \checkmark writes matrix equation \checkmark post-multiplies by inverse \checkmark determines M

(ii) If the area of triangle *ABC* is k square units, express the area of triangle A''B''C'' in terms of k. (2 marks)

Solution
M = 6
New area = $6k$
Specific behaviours
Specific behaviours ✓ determinant of <i>M</i>

- How many numbers must be chosen from the set of integers between 1 and 2017
- (a) inclusive to be certain that one of the numbers chosen is a multiple of 10. (3 marks)

Solution			
201 multiples of 10 between 1 to 2017.			
Require $2017 - 201 = 1816$ pigeonholes.			
Hence must choose 1 817 integers.			
Specific behaviours			
✓ states # of multiples in set			
✓ one pigeonhole for every non-multiple			
✓ uses pigeonhole principle to add one			

- A number is formed using four different digits chosen from those in the number 23 814. (b) Determine how many different numbers can be formed that are
 - (i) even.

Solution
$n(A) = 3 \times 4 \times 3 \times 2 = 72$
Specific hehoviouro
Specific behaviours
✓ states number

(ii) greater than 8 000.

Solution
$n(B) = 1 \times 4 \times 3 \times 2 = 24$
Specific behaviours
✓ states number

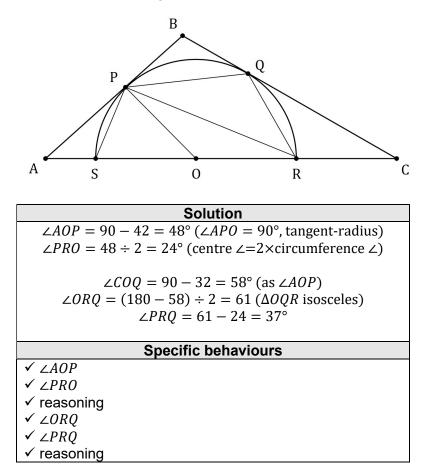
even or greater than 8 000. (iii)

Solution				
$n(A \cap B) = 1 \times 2 \times 3 \times 2 = 12$				
$n(A \cup B) = 72 + 24 - 12 = 84$				
84 numbers				
Specific behaviours				
\checkmark calculates number even and greater than 8 000				
✓ states number				
84 numbers Specific behaviours ✓ calculates number even and greater than 8 000				

SPECIALIST UNITS 1 AND 2

(7 marks)

(1 mark)


(1 mark)

(2 marks)

(6 marks)

The diagram shows a semi-circle, with diameter *SR* and centre *O*, circumscribed by triangle *ABC*, in which $\angle BAC = 42^{\circ}$ and $\angle BCA = 32^{\circ}$.

Determine, with reasons, the size of angles $\angle PRO$ and $\angle PRQ$.

(8 marks)

The sum of the first *n* terms of the sequence $2 + 8 + 14 + 20 + \dots + (6n - 4)$ is n(3n - 1).

(a) Show that this statement is true when n = 5.

(2 marks)

Solution	
LHS = 2 + 8 + 14 + 20 + 26 = 70	
$RHS = 5(3(5) - 1) = 5 \times 14 = 70$	
Hence statement true	
Specific behaviours	
✓ shows sum of terms for LHS	
✓ shows substitution in RHS and states true	

(b) Use mathematical induction to prove the statement is true for $n \in \mathbb{Z}$, $n \ge 5$. (6 marks)

Solution	
Assume statement true when $n = k$:	
$2 + 8 + 14 + 20 + \dots + (6k - 4) = k(3k - 1)$	
When $n = k + 1$:	
$2+8+14+20+\dots+(6k-4)+(6k-4+6) = k(3k-1)+(6k-4+6) = k(3k-1)+(6k-4+6) = k(3k-1)+(6k-4+6) = k(3k-1)+(6k-4)+(6k-4+6) = k(3k-1)+(6k-4)+(6k-4+6) = k(3k-1)+(6k-4+6) = k(k+1)(3k+4) = k(k+1)(3k+4) = k(k+1)(3k+4) = n(3n-1)+(6k-4) = k(k+1)(3k+4) = n(3n-1)+(6k-4) = k(3k-1)+(6k-4) = k(k+1)(3k+4) = n(3n-1)+(6k-4) = k(k+1)(3k+4) = n(3n-1)+(6k-4) = k(k+1)(3k-4) = k(k+1)(k+1)(k+1)(k+1)(k+1) = k(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1$	2) (1) - 1) en $n = k + 1$
Specific behaviours	
 ✓ assumed true for n = k ✓ adds next term to both sides ✓ simplifies RHS ✓ factors k+1 out of RHS ✓ indicates true for n = k + 1 ✓ summary statement including truth of n = 5 	

9